Search results for "Protein Kinase C-delta"

showing 5 items of 5 documents

Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells

2018

SUMMARY Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking pr…

0301 basic medicineRetinal degenerationInduced Pluripotent Stem CellsRespiratory MucosaRetinal Pigment EpitheliumBiologyCell MaturationCiliopathiesArticleGeneral Biochemistry Genetics and Molecular BiologyMice03 medical and health sciencesCiliogenesismedicineAnimalsCiliaInduced pluripotent stem celllcsh:QH301-705.5Mice KnockoutRetinal pigment epitheliumCiliumRetinal Degenerationmedicine.diseaseCiliopathieseye diseasesCell biologyProtein Kinase C-deltaCiliopathy030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)sense organsCell Reports
researchProduct

Involvement of protein kinase Cdelta in contact-dependent inhibition of growth in human and murine fibroblasts.

2001

There is evidence that protein kinase C delta (PKCdelta) is a tumor suppressor, although its physiological role has not been elucidated so far. Since important anti-proliferative signals are mediated by cell-cell contacts we studied whether PKCdelta is involved in contact-dependent inhibition of growth in human (FH109) and murine (NIH3T3) fibroblasts. Cell-cell contacts were imitated by the addition of glutardialdehyde-fixed cells to sparsely seeded fibroblasts. Downregulation of the PKC isoforms alpha, delta, epsilon, and mu after prolonged treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA, 0.1 microM) resulted in a significant release from contact-inhibition in FH109 cells. Bryosta…

Cancer ResearchTime FactorsBryostatin 1ImmunoprecipitationActive Transport Cell NucleusDown-RegulationBiologychemistry.chemical_compoundFixativesLactonesMiceDownregulation and upregulationGeneticsmedicineAnimalsHumansProtein IsoformsBenzopyransEnzyme InhibitorsFibroblastProtein kinase AMolecular BiologyProtein kinase CProtein Kinase CChemotaxisCell CycleAcetophenones3T3 CellsFibroblastsBryostatinsMolecular biologyBlotIsoenzymesProtein Kinase C-deltamedicine.anatomical_structurechemistryGlutaralTetradecanoylphorbol AcetateMacrolidesMitogensRottlerinCell DivisionProtein BindingOncogene
researchProduct

Docosahexaenoic Acid Induces Increases in [Ca2+]ivia Inositol 1,4,5-Triphosphate Production and Activates Protein Kinase Cγ and -δ via Phosphatidylse…

2007

We investigated, in monocytic leukemia U937 cells, the effects of docosahexaenoic acid (DHA; 22:6 n-3) on calcium signaling and determined the implication of phospholipase C (PLC) and protein kinase C (PKC) in this pathway. DHA induced dose-dependent increases in [Ca2+]i, which were contributed by intracellular pool, via the production of inositol-1,4,5-triphosphate (IP3) and store-operated Ca2+ (SOC) influx, via opening of Ca2+ release-activated Ca2+ (CRAC) channels. Chemical inhibition of PLC, PKCgamma, and PKCdelta, but not of PKCbeta I/II, PKCalpha, or PKCbetaI, significantly diminished DHA-induced increases in [Ca2+]i. In vitro PKC assays revealed that DHA induced a approximately 2-fol…

Intracellular FluidDocosahexaenoic AcidsApoptosisInositol 145-TrisphosphatePhosphatidylserinesBiologyEnzyme activatorchemistry.chemical_compoundHumansCalcium SignalingPhosphatidylserine bindingProtein Kinase CProtein kinase CCalcium signalingPharmacologyBinding SitesPhospholipase CU937 CellsPhosphatidylserineMolecular biologyCell biologyEnzyme ActivationProtein Kinase C-deltachemistryDocosahexaenoic acidApoptosisMolecular Medicinelipids (amino acids peptides and proteins)Molecular Pharmacology
researchProduct

Rottlerin induces a transformed phenotype in human keratinocytes.

2001

PKCdelta plays a fundamental role in cell cycle control. Consistent with its proposed tumour suppressor function, ras transfection of the human keratinocyte cell line HaCaT results in a loss of PKCdelta expression mediated by TGFalpha (Exp. Cell Res., 219, 299, 1995). To get more insight into the role of PKCdelta in keratinocytes, we investigated the effects of Rottlerin, a specific inhibitor of protein kinase Cdelta, in HaCaT cells. After Rottlerin treatment, HaCaT cells lost their cobble-stone morphology and displayed a spindle-shaped, fibroblastic phenotype. Additionally, the establishment of cell-cell contacts was prevented. This was caused by an internalization of E-cadherin and beta-c…

Keratinocytesmedia_common.quotation_subjectCellBiophysicsBiologyBiochemistryCell Linechemistry.chemical_compoundmedicineCell AdhesionHumansBenzopyransEnzyme InhibitorsProtein kinase AInternalizationMolecular BiologyProtein Kinase Cbeta Cateninmedia_commonintegumentary systemContact InhibitionAcetophenonesCell DifferentiationCell BiologyTransfectionCadherinsPhenotypeMolecular biologyCell biologyIsoenzymesHaCaTCytoskeletal ProteinsProtein Kinase C-deltamedicine.anatomical_structureCell Transformation NeoplasticPhenotypechemistryCell cultureTrans-ActivatorsRottlerinBiochemical and biophysical research communications
researchProduct

Protein kinase C controls activation of the DNA integrity checkpoint

2014

The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translatio…

Saccharomyces cerevisiae ProteinsCell cycle checkpointCell Cycle ProteinsProtein Serine-Threonine KinasesGenome Integrity Repair and ReplicationBiologyGeneticsHumansCHEK1Kinase activityCheckpoint Kinase 2Protein Kinase CProtein kinase CDNA-PKcsDNA integrity checkpointIntracellular Signaling Peptides and ProteinsG2-M DNA damage checkpointCell biologyCheckpoint Kinase 2Protein Kinase C-deltaBiochemistryMutationProtein Processing Post-TranslationalDNA DamageHeLa CellsMutagensNucleic Acids Research
researchProduct